

air quality monitoring

Aktualisiert: Februar 2025

Passivsammler für BTEX

Produktnummer SP16

Verfahrensbeschreibung

Der Passivsammler ermöglicht die Messung der BTEX-Konzentrationen (Benzol, Toluol, Ethylbenzol und Xylols) in der Luft in zwei Schritten. Zuerst werden die Schadstoffe selbständig und ohne Energiequelle gesammelt. Danach wird die gesammelte Schadstoffmenge in unserem Labor analysiert.

Der Sammler arbeitet nach dem Prinzip der passiven Diffusion der Schadstoffmoleküle und deren Adsorption auf Aktivkohle aus Kokosnussschalen. Die Probennahme erfolgt autark über 1 bis 4 Wochen. Ein beidseitiger Schutzfilter reduziert Umwelteinflüsse und ermöglicht eine präzise BTEX-Messung.

Wir analysieren gaschromatographisch nach EN 14662-5 [1], in unserem nach ISO 17025 akkreditierten Schweizer Labor. Die mittlere BTEX-Konzentration berechnet sich anschliessend aus der Schadstoffmenge, Expositionszeit und Sammelrate. Für die Messstelle ist nur ein Schutzbehälter erforderlich, der auch als Halterung dient. Die einfache Installation ermöglicht den Einsatz auch an abgelegenen Orten. Jeder Sammler ist eindeutig durch Lotnummer, ID und Ablaufdatum identifizierbar.

Anwendung

Zu den Hauptquellen von BTEX-Emissionen zählen Verbrennungsprozesse aus dem Verkehr, Produkte aus chemischen Produktionsprozessen (Raffinerien, Farben und Lacke, Kunststoffe) sowie die Lagerung und Verarbeitung von Brenn- und Kraftstoffen. Passivsammlermessungen sind entscheidend für das Verständnis und die Kontrolle von BTEX-Belastungen in der Luft. Dank seiner Kosteneffizienz, einfachen Handhabung und hohen Flexibilität findet der Passivsammler zahlreiche Anwendungen in der Luftgüteüberwachung:

- Regulatorische Überwachung: Das BTEX-Passivsammlerverfahren dient zur Überwachung der Benzolkonzentration gemäß EU-Richtlinie. Der Benzol-Jahresmittelgrenzwert wird von aktuell 5,0 μg/m³ bis 2030 auf 3,4 μg/m³ gesenkt [2]
- Luftqualitätsstudien und Quellenidentifikation: Die Bestimmung der räumlichen Verteilung von BTEX ermöglicht die Zuordnung von Quellen wie Verkehr [3,4] oder Tankstellen^[4] als dominante Emissionsquellen.
- Epidemiologische Studien zu den Auswirkungen der Schadstoffe auf Menschen und Umwelt.
- Überprüfung der Luftqualität in Innenräumen wie Laboren, Lagerhallen oder Produktionsstätten.
- Überwachung industrieller Prozesse z.B. in der Petroindustrie.

Spezifikationen	
Sammlertyp und Dimension	Glass-Typ (≈ Ø 10 mm, Länge 30 mm)
Expositionszeit	1 – 4 Wochen
Sammelrate [ml/min] bei 20°C	6.44 Benzol, 5.72 Toluol, 5.20 Ethylbenzol, 5.04 / 5.03 / 5.45 p-/m-/o-Xylol
maximaler Arbeitsbereich	170 μg/m ³
Nachweisgrenze	$0.3-0.5~\mu g/m^3$ bei 4 Wochen oder $0.6-1.0~\mu g/m^3$ bei 2 Wochen Exposition
Messunsicherheit	28.4 % bei 5 ug/m³ Benzol
Analysezeit	ca. 10 – 20 Tage
Haltbarkeit und Lagerbedingungen	24 Monate vor Exposition im verschlossenen Plastiksack bei Raumtemperatur, 6 Monate nach Exposition vor Sonneneinstrahlung geschützt
Transportbedingungen	Bruchsicher im verschlossenen Plastiksack
Umwelteinflüsse < 10%	Wind: im Bereich < 1.5 m/s Temperatur: im Bereich -1 – 22 °C relative Luftfeuchte: 20 - 60%
Querempfindlichkeiten	keine bekannt
Validierung des Verfahrens	im akkreditierten Bereich ISO/IEC 17025 gemäss EN 14662-5/ EN 13528

Literatur

- [1] EN 14662-5: Luftbeschaffenheit Standardverfahren zur Bestimmung von Benzolkonzentrationen, Teil 5: Diffusionsprobenahme mit anschließender Lösemitteldesorption und Gaschromatographie.
- [2] Richtlinie (EU) 2024/2881 des Europäischen Parlaments und des Rates vom 23. Oktober 2024 über Luftqualität und saubere Luft für Europa; https://eur-lex.europa.eu/eli/dir/2024/2881/oj
- [3] Marčiulaitienė et al. 2017: The characteristics of BTEX concentration in various types of environments in the Baltic Sea Region, Lithuania, Environ Sci Pollut Res (2017) 24:4162–4173.
- [4] H. Amini et al., Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR), Environmental Pollution, Volume 226, 2017, Pages 219-229, https://doi.org/10.1016/j.envpol.2017.04.027

